97,382 research outputs found

    Phased array antenna beamforming using optical processor

    Get PDF
    The feasibility of optical processor based beamforming for microwave array antennas is investigated. The primary focus is on systems utilizing the 20/30 GHz communications band and a transmit configuration exclusively to serve this band. A mathematical model is developed for computation of candidate design configurations. The model is capable of determination of the necessary design parameters required for spatial aspects of the microwave 'footprint' (beam) formation. Computed example beams transmitted from geosynchronous orbit are presented to demonstrate network capabilities. The effect of the processor on the output microwave signal to noise quality at the antenna interface is also considered

    A computational method for viscous incompressible flows

    Get PDF
    An implicit, finite-difference procedure for numerically solving viscous incompressible flows is presented. The pressure-field solution is based on the pseudocompressibility method in which a time-derivative pressure term is introduced into the mass-conservation equation to form a set of hyperbolic equations. The pressure-wave propagation and the spreading of the viscous effect is investigated using simple test problems. Computed results for external and internal flows are presented to verify the present method which has proved to be very robust in simulating incompressible flows

    Study of providing omnidirectional vibration isolation to entire space shuttle payload packages

    Get PDF
    Techniques to provide omnidirectional vibration isolation for a space shuttle payload package were investigated via a reduced-scale model. Development, design, fabrication, assembly and test evaluation of a 0.125-scale isolation model are described. Final drawings for fabricated mechanical components are identified, and prints of all drawings are included

    Fitting Precision Electroweak Data with Exotic Heavy Quarks

    Get PDF
    The 1999 precision electroweak data from LEP and SLC persist in showing some slight discrepancies from the assumed standard model, mostly regarding bb and cc quarks. We show how their mixing with exotic heavy quarks could result in a more consistent fit of all the data, including two unconventional interpretations of the top quark.Comment: 7 pages, no figure, 2 typos corrected, 1 reference update

    Selected highlights from the study of mesons

    Full text link
    We provide a brief review of recent progress in the study of mesons using QCD's Dyson-Schwinger equations. Along the way we touch on aspects of confinement and dynamical chiral symmetry breaking but in the main focus upon: exact results for pseudoscalar mesons, including aspects of the eta-eta' problem; a realisation that the so-called vacuum condensates are actually an intrinsic, localised property of hadrons; an essentially nonperturbative procedure for constructing a symmetry-preserving Bethe-Salpeter kernel, which has enabled a demonstration that dressed-quarks possess momentum-dependent anomalous chromo- and electromagnetic moments that are large at infrared momenta, and resolution of a longstanding problem in understanding the mass-splitting between rho- and a1-mesons such that they are now readily seen to be parity partners in the meson spectrum; features of electromagnetic form factors connected with charged and neutral pions; and computation and explanation of valence-quark distribution functions in pseudoscalar mesons. We argue that in solving QCD, a constructive feedback between theory and extant and forthcoming experiments will enable constraints to be placed on the infrared behaviour of QCD's beta-function, the nonperturbative quantity at the core of hadron physics.Comment: 28 pages, 15 figures, 2 tables. Version to appear in the Chinese Journal of Physic

    Antenna beamforming using optical processing

    Get PDF
    This work concerns itself with the analytical investigation into the feasibility of optical processor based beamforming for microwave array antennas. The primary focus is on systems utilizing the 20 and 30 GHz communications band and a transmit configuration exclusively to serve this band. A mathematical model is developed for computation of candidate design configurations. The model is capable of determination of the necessary design parameters required for both spatial aspects of the microwave footprint (beam) formation as well as transmitted signal quality. Computed example beams transmitted from geosynchronous orbit are presented to demonstrate network capabilities. A comprehensive device/component survey is also conducted in parallel to determine the feasibility of breadboarding a transmit processor. Recommendations are made for the configuration of such a processor and the components which would comprise such a network

    Flavor SU(4) breaking between effective couplings

    Get PDF
    Using a framework in which all elements are constrained by Dyson-Schwinger equation studies in QCD, and therefore incorporates a consistent, direct and simultaneous description of light- and heavy-quarks and the states they constitute, we analyze the accuracy of SU(4)-flavor symmetry relations between {\pi}{\rho}{\pi}, K{\rho}K and D{\rho}D couplings. Such relations are widely used in phenomenological analyses of the interactions between matter and charmed mesons. We find that whilst SU(3)-flavor symmetry is accurate to 20%, SU(4) relations underestimate the D{\rho}D coupling by a factor of five.Comment: 5 pages, two figure
    • …
    corecore